程念


 


办公地点:长江大学(东校区)主教309办公室

研究方向:钙钛矿太阳能电池

导师类型:物理学/电子信息硕导

联系方式:chengnian@foxmail.com

个人主页:https://www.researchgate.net/profile/Nian-Cheng

 

个人简介:

  程念,男,博士,副教授,硕士生导师。主要研究方向为钙钛矿光电材料与器件。目前,主持完成河南省高等学校重点科研项目1项,河南省自然科学基金项目1项。以第一作者或通讯作者在《Chemical Engineering Journal》、 《Journal of Materials Chemistry A》、 《Journal of Power Sources Solar Energy Materials and Solar Cell》、 Solar RRL》等期刊发表论文30余篇。

 

教育/工作经历:

2025年至今 长江大学,物理与光电工程学院,副教授

202312-202412 长江大学,物理与光电工程学院,特任副教授

20177-202311 信阳师范大学,建筑节能材料河南省协同创新中心,讲师

20149-20176 武汉大学 材料物理与化学专业,获工学博士学位,导师:赵兴中教授

20119-20146月 上海硅酸盐研究所,材料物理与化学专业,获工学硕士学位,导师:陈立东教授

20079-20116月 武汉大学,材料物理专业,获得学士学位

代表性论文(第一作者或通讯作者):

2025

(1) Composition engineering of a Cu2ZnGexSn1-xS4 nanoparticle hole transport layer for carbon electrode-based perovskite solar cells, Journal of Materials Chemistry A, 2025, 13, 595.

(2) Enhance the performance of CsPbBr3 perovskite solar cell through morphology modulation and defect passivation with RbCl additive, Journal of Alloy and Compounds, 2025, 1036, 181773.

(3) Simulation study of carbon electrode based CsPbBr3 homojunction solar cells for enhanced performance, Solar Energy, 2025, 301, 113931.

(4) Enhance the performance of CsPbBr3 perovskite solar cells with RbBF4 additive, Physica Scripta, 2025, 100, 0859a3.

2024

(5) Promote the performance of carbon electrode based perovskite solar cells with Cu2GeS3 hole transport layer, Chemical Engineering Journal, 2024, 489, 151463.

(6) Enhance the efficiency of perovskite solar cells using W doped SnO2 electron transporting layer, ChemPhotoChem, 2024, e202300275.

2023

(7) Efficient Carbon-based Perovskite Solar Cells Passivated by Alkylammonium Chloride, Solar RRL, 2023. https://doi.org/10.1002/solr.202300854

(8) Simultaneous Incorporation of CsI in the Two‐step Deposition Process Boosts the Power Conversion Efficiency and Stability of Perovskite Solar Cells, ChemPhysChem, 2023. https://doi.org/10.1002/cphc.202300599

(9) Surface Passivation of Perovskite Solar Cells with Oxalic Acid: Increased Efficiency and Device Stability, ChemPlusChem, 2023, 88, e202300367.

2022

(10) A modified two-step sequential spin-coating method for perovskite solar cells using CsI containing organic salts in mixed ethanol/methanol solvent, Solar Energy Materials and Solar Cells, 2023, 250: 112107.

(11) Low Temperature Processed SnO2 Electron Transporting Layer from Tin Oxalate for Perovskite Solar Cells, ACS Applied Energy Materials, 2022, 5: 15385-15391.

(12) Cu2ZnGeS4 as a novel hole transport material for carbon-based perovskite solar cells with power conversion efficiency above 18%, Chemical Engineering Journal, 2023, 454, 140146.

(13) Highly efficient perovskite solar cells employing SnO2 electron transporting layer derived from a tin oxalate precursor solution, Journal of Power Sources, 2022, 544: 231871.

(14) Cu2SnS3 Nanocrystal-Based Hole-Transport Layer for Carbon Electrode-Based Perovskite Solar Cells, ACS Applied Nano Materials, 2022, 5: 10755.

(15) SnO2 electron transport layer modified with gentian violet for perovskite solar cells with enhanced performance, Organic Electronics, 2022, 108: 106600.

2021

(16) High performance inverted perovskite solar cells using PEDOT:PSS/KCl hybrid hole transporting layer, Organic Electronics, 2021, 98: 106298.

(17) CZTS nanoparticles as an effective hole-transport layer for Sb2Se3 thin-film solar cells, Solar Energy, 2021, 226: 154.

(18) Scalable one-step heating up synthesis of Cu2ZnSnS4 nanocrystals hole conducting materials for carbon electrode based perovskite solar cells, Solar Energy, 2021, 224: 51.

(19) Efficient and stable MAPbI3 perovskite solar cells achieved via chlorobenzene/perylene mixed anti-solvent, Solar Energy, 2021, 220: 251.

2020

(20) Ligand modification of Cu2ZnSnS4 nanoparticles boosts the performance of low temperature paintable carbon electrode based perovskite solar cells to 17.71%, Journal of Materials Chemistry A, 2020, 8: 12080.

2019

(21) Boost the performance of inverted perovskite solar cells with PEDOT:PSS/Graphene quantum dots composite hole transporting layer, Organic Electronics, 2020, 78: 105575.

(22) Cu2ZnSnS4 as an efficient hole transporting material for low temperature paintable carbon electrode based perovskite solar cells, Organic Electronics, 2020, 76: 105455.

(23) A simulation study of valence band offset engineering at the perovskite/Cu2ZnSn(Se1-xSx)4 interface for enhanced performance, Materials Science in Semiconductor Processing, 2019, 90: 59.

2018

(24) Enhance the performance and stability of methylammonium lead iodide perovskite solar cells with guanidinium thiocyanate additive, Current Applied Physics, 2019, 19: 25.

2017

(25) High performance hole transport material free perovskite solar cells from a low pure PbI2 source using a facile solid-gas reaction process, Organic Electronics, 2018, 53: 221.

(26) Combined solvent and vapor treatment to prepare high quality perovskite films under high relative humidity, Electrochimica Acta, 2017, 246: 990.

2016年以前

(27) Multi-walled carbon nanotubes act as charge transport channel to boost the efficiency of hole transport material free perovskite solar cells, Journal of Power Sources, 2016, 332: 24.

(28) Application of mesoporous SiO2 layer as an insulating layer in high performance hole transport material free CH3NH3PbI3 perovskite solar cells, Journal of Power Sources, 2016, 321: 71.

(29) Enhanced performance in hole transport material free perovskite solar cells via morphology control of PbI2 film by solvent treatment, Journal of Power Sources, 2016, 319: 111.

(30) Enhanced thermoelectric performance in Cd doped CuInTe2 compounds, Journal of Applied Physics, 2014, 115: 163705.

 

指导研究生:

胡国锐(电子信息硕士,2023级),第一作者在Physica Scripta发表论文一篇。

欧阳鹏飞(物理学硕士,2024级)

张莎莎(光学工程硕士,2025级)

陈道卓(光学工程硕士,2025级)


 

长江大学物理与光电工程学院 地址:湖北荆州市荆州区学苑路1号长江大学东校区 邮编:434023 办公室电话:0716-8060967